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ON THE IMPLEMENTATION OF SINGLY 
IMPLICIT RUNGE-KUTTA METHODS 

G. J. COOPER 

ABSTRACT. A modified Newton method is often used to solve the algebraic 
equations that arise in the application of implicit Runge-Kutta methods. When 
the Runge-Kutta method has a coefficient matrix A with a single point spec- 
trum (with eigenvalue A), the efficiency of the modified Newton method is 
much improved by using a similarity transformation of A. Each iteration in- 
volves vector transformations. In this article an alternative iteration scheme is 
obtained which does not require vector transformations and which is simpler in 
other respects also. Both schemes converge in a finite number of iterations when 
applied to linear systems of differential equations, but the new scheme uses the 
nilpotency of A - AI to achieve this. Numerical results confirm the predicted 
convergence for nonlinear systems and indicate that the scheme may be a use- 
ful alternative to the modified Newton method for low-dimensional systems. 
The scheme seems to become less effective as the dimension increases. How- 
ever, it has clear advantages for parallel computation, making it competitive for 
high-dimensional systems. 

1. INTRODUCTION 

Two general approaches to the implementation of implicit Runge-Kutta meth- 
ods have been proposed. In one approach, described by Chipman [8], a modified 
Newton method is used and schemes are developed to solve the resulting linear 
equations efficiently. Bickart [1] and Collings and Tee [9] describe schemes of 
this type. In another scheme of this general type, due to Butcher [5], a similarity 
transformation of the coefficient matrix of the method is used. This is partic- 
ularly effective when the matrix has a single point spectrum, even though each 
step of the modified Newton iteration requires up to three vector transforma- 
tions. Suppose that an s-stage method is applied to a system of n differential 
equations. Then each vector transformation requires 0(s 2n) operations. When 
the matrix of coefficients does not have a single point spectrum, Enright [12] 
suggested the use of an additional similarity transformation to transform the 
Jacobian of the differential system to Hessenberg form. This scheme is com- 
paratively inefficient because each of the corresponding vector transformations 
requires 0(s 2n + sn 2) operations. In addition, problems arise when the coef- 
ficient matrix has a complex spectrum, although Varah [17] has suggested the 
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use of complex arithmetic. In a final proposal of this first general type, Cash 
[7] restricts attention to Runge-Kutta methods of a special form which makes 
the system of equations effectively of lower dimension. As in the approaches of 
Bickart and of Collings and Tee, the necessity to compute polynomials in the 
Jacobian matrix may aggravate ill-conditioning. For these reasons the properties 
of singly implicit methods have received much attention. 

The other general approach is to use schemes based directly on iterative pro- 
cedures. Frank and Ueberhuber [13] describe the use of iterated defect correc- 
tions. A variety of other iteration schemes have been discussed by Butcher [6]. 
Cooper and Butcher [10] considered a generalization of one of these schemes 
in which the Jacobian is used explicitly. They examined the convergence rate 
for a linear test problem and pointed out that superlinear convergence can be 
achieved only for singly implicit methods. A simple iteration scheme of this 
type is described in this article and the convergence rate for nonlinear systems 
is analyzed. Because the scheme does not require vector transformations in 
each step of the iteration, and because of the low computational overheads, the 
scheme may compete with the modified Newton method when n is small. Some 
numerical results are given to illustrate this and to confirm the convergence rate. 
The new scheme seems to be more efficient for parallel computation, since each 
step of the scheme consists of a number of independent stages. This advantage 
becomes more marked as n increases. 

2. BACKGROUND 

Consider the initial value problem for a system of n differential equations 

x =f (x), x(to) = x0, 

and let Xr be an approximation to X(tr), tr = to + rh, r = 1, 2, 3, . An 
s-stage Runge-Kutta method gives 

S 

Xr+i = Xr + hE bif(y)E 
i= 1 

where Y, y2, ... E Ys satisfy the sn equations 

S 

(2.1) Xr- Yi+hE aijf(yj) =0, i= 1,2,...,s. 
j=1 

This article deals with singly implicit methods suitable for stiff systems, so that, 
although the matrix of coefficients A = [aij] is not strictly lower triangular, 
there is a real nonsingular matrix S such that 

(2.2) S-IAS= RI+ T, 

where T is strictly lower triangular and I is the s x s identity matrix. 
Let Y = Yl ( Y2 ( Ys be an sn-element column vector, and let Xr = 

Xr EXrE (D.EDXr and F(Y) = f(y1) f(y2) e ... e f(y). With this notation, 
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equations (2.1) may be represented as D(Y) = 0 with 

(2.3) D(Y) = Xr - Y + h(A I)F(Y), 

where A 0 I is the direct product of A with the n x n identity matrix and, in 
general, 

[a11R a12R alsR 

a2IR a22R ... a2SR . 

asR as2R .assR 

The equation D(Y) = 0 may be solved by Newton iteration, noting that the 
derivative of D is given by D'(Y) = h(A ? I)F'(Y) - I and that the derivative 
of F at Y is the block diagonal matrix F'(Y) = f'(y1) ( f (Y2) ... (f(s) I 
where each block is the derivative of f, the Jacobian evaluated at one of the 
points Y1, Y2, . . . , ys . The Newton iteration is expensive because, in each step, 
the Jacobian is evaluated s times and a set of sn linear equations has to be 
solved. 

In the modified Newton iteration, the Jacobian is computed comparatively in- 
frequently. Let J be the Jacobian evaluated at some recent point xi . The mod- 

ified iteration scheme evaluates Al, 5A, A ...2, and hence Y , y 2Y ... 
3 

to satisfy the equations 

(2.4) [I-hA J]Am D(Ym- ), m = 1, 2, 3. 

In each step of this iteration a set of sn linear equations has to be solved, but 
this work may be reduced by applying the transformation (2.2). The iteration 
scheme (2.4) becomes 

2.)[I -h(AI + T) C) J]E M = (S-' X I)D(Ym-') 
(2.5) 

ym= y-1 + (SoI)Em , m = 123... 

and, since T is strictly lower triangular, each step requires the solution of s 
sets of n linear equations. The transformations D(Ym I) , (S-lII)D(Ymrn) 
and Em -, (S o I)Em each require 0(s2n) operations. The transformation 
Emin - (T ? J)Em requires 0(s 2n + sn 2) operations but this work may be 
eliminated by expressing the iteration scheme (2.5) in the form 

(2.6) 
[I -hAI o i J]Em (CS-1 - I)D(Ym-i) - (L X I)E X m 1 2 3 

Y = Y + (SoI)E , 

where C = A)(AI + T) 1 and L = C - I is strictly lower triangular. Noting 
that L = )S 1A1 S - I, we choose S so that AS 1A S1 is the Jordan canon- 
ical form of RA 1 . Then all elements of L are zero except for units on the 
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subdiagonal. In general, this subdiagonal is full, so that each step of the scheme 
(2.6) consists of s stages which have to be performed in sequence. 

3. THE ITERATION SCHEME 

Consider an iteration scheme of the form 

(3.1) [I-hAI X J]Em =(B I)D(Ym ), m = 1, 2, 3, ..., 
ym =yml +Em , 

where B is a real nonsingular s x s matrix which is to be chosen so that 
the calculation of (B 0 I)D(W) is no more expensive than the calculation of 
D(W). The aim is to obtain a scheme with rapid convergence which, because 
of the reduced computational cost of each step, can compete with the modified 
Newton iteration. Note that each step of the proposed scheme (3.1) consists of 
s stages which can be performed in parallel. 

In the following it is assumed that the sequence { Ym } has limit Y, with the 
continuity of f ensuring that D(Y) = 0. Stronger conditions on f are needed 
to discuss the rate of convergence. Let f be continuously differentiable with 
derivative f:in __ _Y(1Rn , n), where Y(Rn , an) is the space of continuous 
linear maps of Rn into Rn with norm induced by a given norm on Rni. Let 
f' satisfy the Lipschitz condition 

llf'(w) -,f(z)ll < LIw - zJ VW, Z E Rn. 

Now let RN , where N = ns, be normed by 

11 V,, = max llvill, V = V1 V2 E) * Vs- 

This norm induces a norm on Y(IRN, RN) and F' satisfies a Lipschitz condi- 
tion on RN with the same Lipschitz constant L. For elements in Y(R N, RN) 
of the special form B 0 R, where B = [bij] is any s x s matrix and R any 
n x n matrix, it can be shown that JIB 0 RIJ < JIBI? J RJJ with 

S 

[ibiJ = max E Ibjj1. 

To examine the rate of convergence of the iteration schemes, let G(W) = 

F(Y) - F(W) - (I ? J)(Y - W) and note that, since D(Y) = 0, 

(3.2) D(W) = [I - hA? J](Y - W) - h(A ? I)G(W). 

Since I o J = F'(Xp), the identity 

G(W) = ]{F(W + t[Y - W]) - F (Xp)} dt[Y - W] 

and the Lipschitz condition on F' give the inequality 

(3.3) JIG( W) 11 < 
L 

Iy{11y - XPII + IIXP - WII}IIY - WIl. 
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For linear problems, L = 0. In an analysis of the Newton iteration, I 0 J 
would be replaced by F'(W), giving JIG(W)I < 2 [ly - WI,2 . Although this 
second-order bound does not hold for the iteration scheme (3.1) or for the 
modified Newton iteration, I J is often an appreciably better approximation 
to F'(W) than is indicated by (3.3). On the other hand, for nonlinear systems, 
the bound (3.3) is replaced by a second-order bound only when the Jacobian 
is updated after each iteration and, in practice, only when the starting value is 
estimated sufficiently accurately. 

Now consider the iteration scheme (3.1), and define Vm = y - ym for 
m = 0, 1, 2 .... Let = Ah and A = AA, and apply (3.2) to give 

(3.4) Vtm = [(I -B) 0I + h(BA-I) (8? J][I (? (I hJ) IIVml1 + Gm 1 

where Gmi = h[(BA)0o (I-hJ) l]G(Ymr1) form = 1, 2, 3 . To obtain 
rapid convergence, B should be chosen so that the spectral radius of 

[(I - B) ? I + h(BA - I) 0 J][I 0 (I- hJ)1] 

is zero for arbitrary J. One possibility is to choose B = I, but it is pos- 
sible instead to choose B = B(a) so that BA - I = a(I - B), giving B = 

(1+ a)(A + aI) 1 for a # -1. With this choice, 

(3.5) [(I - B) X I + h(BA - I) o J][I (I - hJ M K, 

where M = I - B and K are given by 

(3.6) M=(A+aI+ a (A-I), 

(3.7) K = (I + ahJ)(I - h) 

This transformation (3.7) maps eigenvalues of hJ into eigenvalues of K, and 
in the degenerate case, a = 1, eigenvalues in the left half plane are mapped 
into eigenvalues of K of modulus at most one. This value of a seems to be 
particularly suitable for a general purpose iteration scheme. 

Since the spectral radius of A - I is zero, (3.6) shows that the spectral radius 
of M, and hence of M 0 K, is zero also. Note that M is an s x s matrix, so 
that Ms = 0. It now follows from (3.4) and (3.5) that 

V m+s =(Ms- oKs- )Gm + +(MoK)G + G 
(3.8) 

~~~~~~~m = 05 1,25,....5 

so that, for linear systems, the iteration scheme terminates after s iterations. 
For nonlinear systems the performance of the scheme depends, in part, on the 
quality of I o J as an approximation to the derivative of F. 

4. A COMPARISON WITH THE MODIFIED NEWTON ITERATION 

In this section the iteration scheme (3. 1) is compared with the modified New- 
ton iteration. Linear algebra costs are compared in terms of operational counts 
for each iteration and in terms of the relative number of iterations needed by 
the two schemes. 
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Consider a typical step of the iteration scheme (3.1) and suppose that, at the 
beginning of the iteration, vectors Xr - W and hF( W) have been computed. 
To transform D(W) = Xr - W + h(A 0 I)F(W) to (B 0 I)D(W), note that 
BA = aB + (I + a)I, so that 

(4.1) (B 0 I)D(W) = (B ? I)[Xr - W + ahF(W)] + (1 + a)hF(W). 

When a = 1, in particular, the scalar multiplications may be neglected and the 
transformation (4.1) requires s 2n multiplications, the same number needed to 
form D(W). In the remainder of the step, s sets of n linear equations have 
to be solved. Suppose that the matrix I - hJ has been factored as a product 
of a lower and upper triangular matrix. Then the solution of these s sets of 
equations requires sn2 multiplications, giving a total of s 2n + sn2 for one 
iteration. 

Now consider the modified Newton iteration, implemented according 
to (2.6). Suppose that, at the beginning of a typical step, vectors Xr - W 
and hF(W) have been computed. Since there is no simplification of 
(CS 1 0 I)D(W) corresponding to (4.1), the computation of this vector in- 
volves 2s 2n multiplications. Taking into account the solution of the s sets of 
linear equations and the final transformation, a total of 3s2n + sn2 multiplica- 
tions is needed for each iteration. 

In comparing the two schemes it is necessary also to consider the number 
of iterations required. For a given problem, let vi be the number of iterations 
taken by the modified Newton iteration to achieve a specified accuracy, and let 
a be the corresponding number of iterations taken by the scheme (3.1). On the 
basis of linear algebra costs only, the scheme (3.1) is competitive if 

2s a- V 
(4.2) p < where p = 

so that p, the relative increase in the number of iterations taken, needs to be 
small. One way to estimate p is to compare (3.8) with the corresponding result 

(4.3) V m-i = h(A 0 I)((I-hA 0 J)ylG(Ym)), m = O 1, 2, ..., 

for the modified Newton iteration (2.4). For linear problems, p = (s - 1)/2 
because each scheme requires one extra iteration to terminate the scheme. Al- 
though a comparison of (3.8) and (4.3) suggests that this is a good estimate of 
p for nonlinear problems also, this is not the case. Numerical evidence given 
in the next section shows that, while p increases with s, typically p < 1, and 
for some methods, p is substantially less than one. For such methods (4.2) 
indicates that the scheme (3.1) competes with the modified Newton iteration 
for low-dimensional problems. Note that an evaluation of F is required in 
each iteration, so there is an additional cost associated with (3.1). In part this 
can be offset against the higher overheads associated with the implementation 
of (2.6). 

This comparison assumes sequential computation. For parallel computation 
there is a clear advantage in using the scheme (3.1), irrespective of the dimension 
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of the problem. In this scheme the s sets of linear equations can be solved in 
parallel. The transformation (4.1) can also be carried out using n sets of s2 
parallel multiplications. Suppose, for simplicity, that no other use is made of 
parallel computation. Then one iteration requires n + n2 sets of multiplications 
performed in sequence. 

In the modified Newton iteration the transformations also may be carried 
out using parallel multiplications, but the s sets of linear equations have to be 
solved in sequence. Thus, 3n + sn2 sets of multiplications are performed in 
sequence. Since p << s, there is a distinct advantage in using the scheme (3.1), 
an advantage which becomes more marked as n increases. 

5. NUMERICAL RESULTS 

In order to evaluate the efficiency of the iteration scheme suggested here, a 
number of numerical experiments were carried out and some results for three 
initial value problems are reported here. Although the Jacobians have very 
different eigensystems, the performance observed is similar and typical of tests 
with other problems not specifically reported. The results reported deal only 
with the case a = 1 for the iteration scheme (3.1). A wide range of tests have 
shown that this choice is to be preferred. 

By Problem 1 is meant the system 

xl I= x 2, xl(0) = 2, 

x2=5(1-x )X2-x1X x2(0)=0, 

obtained from the Van der Pol equation given by Davis [1 1]. The eigenvalues 
of the Jacobian, evaluated at the initial point, are -0.067 and -14.9. 

Problem 2 is the system, given by Gear [14], 

x =-55x + 65x2-xX3, X1 (0)= 1, 

x=0.0785(x1-9 20=1 X2 =008(1 - X2) X2(0) = 1 S 

x/= 0. 1x1, X3 = .ll 3(0) = 0, 

where the eigenvalues at the initial point are 0.0062 i 0.01i and -55. 
Problem 3 is the elliptic two-body problem, with eccentricity 0.6, given by 

X1 = X 35 XI (0) = 0.4, 

X2 = X 4, X2 (0) = 0, 

XI -X(x2 +X2)-3/2 X3(0) = 0, 

XI -X2(X2 + X2)-312 X4(0) = 2. 

The eigenvalues at the initial point are ?i 2 and ? I . . 2 ~ 2 
For these problems a single integration step was carried out using the iteration 

scheme (3. 1) with a = 1 and with the modified Newton scheme for comparison. 
In each case the Jacobian evaluated at t = 0 was used and, in the results 
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presented here, h was set at 0.1 for Problem 1, at h = 1 for Problem 2, and 
at h = 0.01 for Problem 3. For both schemes the initial iterate chosen was 
Y0 = x ED x E ... E x, where x denotes the solution value at the initial point. 
In practice, extrapolation from previous steps would provide better estimates. 

Tests were carried out on several singly implicit methods described by Burrage 
[2, 3] and N0rsett [16], and also on other methods obtained by applying a 
transformation given by Hairer and Wanner [15]. The results given here, for 
three collocation methods, are typical. For each of these methods, the elements 
of the coefficient matrix A = [aij] and the elements of the vector b = [b1] are 
given by 

k-1 1 k 
La ijcj = ki, k = 1,~ 2, .. s, i = 1, 25 ..... , s , 

j=1 

S 

Z bick k = 1, 2, ... . s- 

i=1 

where c1 , 5c, ... , 3Cs are the zeros of Ls5 the Laguerre polynomial of 
degree s. The order p is at least s, with p = s + 1 if l is a zero of the 
derivative of Ls+ I. 

By Method 1 is meant the collocation method with s = 2 and p = 3 obtained 
by choosing A so that 1is the largest zero of L'3 . The method is given by the 
array 

A (2 - ) (4 - -V ) A(4 - 3X ) 4 -4-v ) 

A (2 +2) 
A 
24(4+3XV2) 6(4+ VI) 3 +3 4 5 ~~~~~~~~~~6 

2+ 8 (4 - ) + 4 
(-) 2 8 (a-I 

Method 2 is the collocation method with s = 3 and p = 4 obtained by 
choosing A = I + V'-/3cos7/18, so that A is the largest zero of L'4. 

Method 3 is also a collocation method but in this case s = 4 and p = 4 with 
A chosen so that 1 = 4.53 662 029 7 is a zero of L4. This is one of the choices 
made by Burrage, Butcher, and Chipman [4]. 

For the iteration scheme (3.1) with a = 1, applied to each method and 
problem, the quantities 

em=l(Y -y II, m = 1, 2, 3, .... 
N were computed for the uniform norm on R . Minimum values of m, for which 

em < e, are given in the table for e = 5.10-4, e = 5.10-7, and e = 5.10-10. 

For comparison, similar information is given in parentheses for the modified 
Newton iteration, again with the Jacobian evaluated at the initial point. 

The results indicate that both the proposed scheme and the modified Newton 
iteration perform badly with Method 2. The reasons for this are not known, but 
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TABLE 

Number of iterates m needed to give ylYm - Ym-rni < e. 
Figures for the modified Newton iteration are given in parentheses. 

e Method 1 Method 2 Method 3 

5.10-4 4 (3) 5 (4) 6 (3) 

5.10 7 6 (5) 7 (7) 8 (4) Phr-l0m 1 

5.10-10 9 (7) 11 (10) 10 (6) 

5.10-4 4(3) 6(3) 6(3) 

5.10-7 6 (4) 8 (5) 9 (4) Problem 2 

5.10-10 8 (6) 10 (7) 11 (5) 

5.10-4 4(3) 6(3) 5(3) 

5 7 (4) 8 (4) 8 (3) Problem 3 5.10- 5 (4) 8 (4) 8 (3) 
~~~~h = 0.01 

5.10-10 7 (5) 10 (6) 9 (4) _ _ l 

more extensive tests confirm that the absolute performance of each scheme does 
depend strongly on the choice of method, a factor that needs to be considered 
in the design of algorithms. For a given method, the comparative performance 
of the two schemes may be assessed by estimating an average value for T, 
the relative increase in the number of steps needed by the scheme (3.1) to 
obtain em < e. A range of tests was carried out using a variety of problems, 
including the three given here, with various step lengths and initial values. For 
e = 5.10- 10 average values for -p were obtained of about 0.3 for Method 1, 
about 0.4 for Method 2, and about 0.9 for Method 3. Similar values were 
obtained for other choices of e. These values indicate that the scheme (3.1) 
may be a useful alternative to the modified Newton method for problems of low 
dimension. The results indicate that competitiveness is lost as the dimension is 
increased. However, because <? s, the scheme has a marked advantage for 
parallel computation, and then competitiveness is retained for problems of high 
dimension. 
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